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The Jacobi-Perron Algorithm in Integer Form 

By M. D. Hendy and N. S. Jeans 

Abstract. We present an alternative expression of the Jacobi-Perron algorithm on a set of 
n - 1 independent numbers of an algebraic number field of degree n, where computation of 
real valued (nonrational) numbers is avoided. In some instances this saves the need to 
compute with high levels of precision. We also demonstrate a necessary and sufficient 
condition for the algorithm to cycle. The paper is accompanied by several numerical 
examples. 

1. Introduction. The Jacobi-Perron algorithm (JPA) is a generalization of the 
continued fraction algorithm. From the JPA we can recursively obtain a series of 
simultaneous rational approximations to a set of real numbers known as conver- 
gents, with the numerators and denominator at each stage expressed as a linear 
combination of the corresponding numerators or denominators of several previous 
stages. The coefficients of these linear combinations which we will refer to as the 
determining sequence, are derived by the algorithm. 

The JPA performs rational transformations on the original set of real numbers. 
Generally, to obtain convergents approximating the set of real numbers to an 
accuracy of lo-k requires at least 0(k) steps and initial decimal approximations of 
these numbers with an accuracy of at least lo-k. This restricts the algorithm in 
practical computing to small values of k, requiring multiprecision arithmetic, so 
that some questions remain open (Bernstein [2, p. 69]). 

The continued fraction expansion of real quadratic numbers in a field Q(V d), 
d > 0, is ultimately periodic, the continued fraction coefficients (determining 
sequence) can be calculated using an adaption of the continued fraction algorithm 
due partly to Lagrange; see Chrystal [4, Chapter 33]. This adaption has the 
advantage that it operates with small bounded integers and requires only a very 
crude approximation to V d. (For example, for the expansion of V d, the terms are 
all positive integers, bounded above by 2V d, and [V d] is an adequate approxima- 
tion to V d.) 

By treating the algebraic numbers in a field of degree n as a ratio of elements of 
a Z-module, we generalize this adaption for any JPA expansion of n - 1 indepen- 
dent numbers of this field. Further, we note that the JPA is ultimately periodic if 
and only if the integer coefficients of the terms are bounded. We also develop 
explicit forms for this algorithm in the cases n = 2 and n = 3 which are illustrated 
by several examples. 
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2. The General Algorithm. Let 8 be a real algebraic integer of degree n, with 
minimal polynomial p(x) = 0, and let OK be the ring of integers of K = Q(8). Let 
A = Z[1, 8, . .. , 3nl] be the Z-module generated by the powers of 8. Let 

a0,1, ... .,a0,n -1 be n - 1 rationally independent elements of K \ Q, and set ao = 

(ao, I.. .0,n - 1) E Kn -. Following Bernstein [2], the sequence (am), m = 
0, 1,..., of vectors in Rn- Iis called a Jacobi-Perron Algorithm (JPA) of ao if 
there exists a function f: R -* Rn- such that if f(am) = am E R then 

(a) am,, 7 am,1, 

(1) (b) am+1 = (am, - am,l)'(am,2 - am,2, .9am,n-I - am,nI, 1) 

for m = 0, 1,.... 
We shall refer to (am) as the determining sequence for the JPA of ao. The nature 

off is critical in the JPA. Below we restrict f to integer values, i.e. f(am) E= Zn-l SO 
condition (a) of (1) will always be satisfied, and further an,i E K \ Q, m = 0, 
1l,. . .,i= ,19...,.n -1. 

The usual method of calculating the first m terms of the determining sequence is 
to express the aoi in decimal expansion to a sufficient degree of accuracy so that 
significance is not lost in the first m steps of the JPA of ao. Unfortunately, as the 
number of significant digits required for this accuracy is usually 0(m), real 
multiprecision arithmetic subroutines are frequently needed for computation, slow- 
ing down the algorithm and providing a restrictive barrier for large m. 

Below we outline an alternative computational procedure, where all calculations 
(except possibly computing f(am)) are carried out as integer calculations, and in 
some instances for some f these integers remain small, avoiding the need for 
multiprecision arithmetic. 

As ao,i E K, we can find 0,ji yO E OK such that, for i = 1, ... ., n-1, ao0,= 
o0,iy-'. However, for computational convenience, whenever necessary we can 

multiply numerator and denominator by a suitable rational integer so that 80iq 
Yo E A. 

Recurrence relation (1) can now be rewritten as 

(2) am,i= 18m,iY, 
- i = 1,..., n - 1, 

where 

(3) fim+l,i = 13m,i+1 -am,i+lym i=1... n - 29 

fim+1,n-1 = Yimn 

and 

(4) Ym+l I 8m,I - am,lym, 

with am = f(Pm Ym) 

Let Qm = N(Ym). Then, as Qmy 2 is the product of the n - 1 remaining 

conjugates of Ymi 

(5) m,i = Qmam,i = m,iQmY,, 

is an element of A. If we let 

(6) 'Pm,i = 9m,i - am,iQm, 
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we can obtain another expression for the recurrence relation. For X E 
Z[1, 8, . . . , an- 1] we will use the notation X' = N(X)XA, so X' is the product of the 
remaining conjugates of X. 

Now 

(7) Qm+. = N(ym+i) = N(3mP, -aam,Iym) = N(om, )Q.' 

(8) am+lI,n-I = am+I,n-IQm+I (am, - am,)I Qm+ 1 

= 4,lQmQm+I = 4m, l nQ 

Using (8), we can reexpress (7) to avoid using the norm function, 

(9) Qm+l = 40m,mt,Qm&- = am+I,n-I40m,IQ;,2 

and,fori=1,...,n-2, 

(10) 0m+ li ,=)m,i+I m+I,n-IQm,2 

Thus, 

(1) am + I = f(am + 1) = f(Om + I Qm4+ 1), 

and 

(12) 4Om+ Ii = 0m+ Ii - am+I,iQm+i for i = 1,..., n - 1. 

Equations (8)-(12) specify the algorithm with initial values, QO known, ao =f(ao) 

00 = Qoao, 4p = 0 - Q0a. Except for (11), the evaluation of f of which may 
require the expression of Om + 1 Q,-+, 1 as a real valued vector, all other calculations in 
this algorithm can be computed using integer expressions alone, if we express 0m,is 
SImi,s and m', 1 in terms of their coefficients as elements of A. The coefficients of 4fm I 
can be determined as a function of the coefficients of 4m,, by multiplying the n - 1 
conjugates together and applying the elementary symmetric functions on the 
coefficients of p(x) = 0. 

Suppose the JPA is periodic in the sense that there are positive integers M and k 
such that, for all m > M, 

am+k = am 

For all m > 0, let Im be the OK-module generated by ( 1, am,l, ... am,n I). We see 

YmIm = KYm, Pm,,l * - *m,n-I> 

is an ideal, and from the recurrence relations (3) and (4) we find 

YmIm = Ym+I'm+I 

and so, by induction, YmIm = yoIo and for all m > M 

YmIm Y= +m+km+k = Ym +km 

by the periodicity of am. Now 

YmIm Ym+k'm =* Ym(Ym'm) = Ym+k(YmIm) 

X IN(ym)IN(ymIm) = IN(ym+ k)IN(ymIm) 
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and, since N(ymIm) = N(yoIo) # 0, we have 

IN(ym)I = IN(ym+k)l 

Thus, Qm = SQm +k' where s = + 1 and, consequently, 

Om Qmam = SQm+kam+k S=m+k 

Since 

Qm+1 = = N(nm'i -am,IQm)Q&- 

= 
N(S0m+k,I 

- am+k,ISQm+k)(SQm+k) 

= sN(4bm+k,I)Qm+k = SQm+k+19 

by induction we have 

QM = sQm+k = 2Qm +2k. 

Thus, if s = 1, we have Qm' Om periodic of length k, and if s = -1, we have Qm' 0m 
periodic of length 2k. (See Example 2 for a case in which the length of the period 
of Qm' Om is twice the length of the period of am.) 

Alternatively, if there are integers M and k such that, for all m > M, 

Qm = Qm+k and Om =Om+k 

then, as am = OmQ9,', am = am+k. Hence 

THEOREM 1. The Jacobi-Perron algorithm expansion of ao E K"-I is periodic if 
and only if the values Qm, Om are periodic. 

Further, if the values Qm' Om do cycle, then the integer coefficients of Om and the 
integers Qm are bounded in absolute value by their extreme values in the preperiod 
and the first period. Alternatively, if the integer coefficients of Om and the integers 
Qm are bounded in absolute value, there will only be a finite number of combina- 
tions of Qm' Om possible, so there will exist M, k E Z such that QM = QM+k and 

Om = OM+k. Thus, 

aM = OM/QM = OM+k/QM+k = aM+k, 

and, consequently, 

aM = f(aM) = f(aM+k) = aM+k. 

From (1) it is clear that am+k = am, for all m > M, that is, the algorithm cycles. So 
we have 

COROLLARY. The Jacobi-Perron algorithm expansion of ao E K"-1 is periodic if 
and only if the integers Qm and the integer coefficients of 0m,ig expressed as elements of 
the Z-module [1, 8 . . . , 8"], are bounded. 

For some f these integer coefficients remain bounded and multiprecision arith- 
metic is avoided. 

For suitably chosen f, the JPA can be used to derive a series of rational 
approximationspm,i/qm to aoi, wherepm,i, qm,( E Z, in the following way. Generaliz- 
ing the convergents of continued fractions, we write 

(13) Pm (qm9Pm,1 . 9 Pm -1) E n 
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recursively defined by 

0 1 0 *.. 0 
O 0 1 * 0 0 

Pm Pm-j1 

o 0 0 *. 1 
1 am,1 am,2 am,n- 

where P_1 = Ing and Pm is the nth row of Pm. 

3. The Algorithm for Quadratic Numbers. If K is a real quadratic field, we can 
find a 8 satisfying X2 - d = 0, i.e. 82 = d > 1, so that K = Q(8). For simplifica- 
tion, as n - 1 = 1, we will reduce the double suffix notation to single suffices on all 
variables, identifying am,i as am, etc. Thus, for aO E K, 3a, b, c, d E Z, with 
(a, b, c) = 1, such that 

aO = (a + bVdi )c-' = 80y 
Hence, 

Qo = N(c) = c2 and 00= (a + bVdi )c, 
and we have 

(14) ao = (Ao + BVid )Q-1' where AO = ac and B = bc. 

If 

(15) Om = Am + (-I)mBVd- 

Eq. (8) gives us, 

0m+1 = 4m = - amQm = (Am - amQm) -(-)mBVd 

so 

(16) Am+i =Am -amQm, 

and 

0m+, = Am+I + (- I)m+lBBV . 

Hence (15) is established by induction. Now, by (9), 

Qm+i = Om?imQn 

(17) = (Am+ I + (- I)m + BlBWd )(Am+ I + (- I)mBVd Qm- 

2 - B2d)Qm-' = Qm-- 2amAm + amQm (Q-1 = Q0N(a0)) 

and so, of course, 

(18) am = J((Am + (-I)mBVd )Qm-'). 

If we let 

(19) em = Pm qmaO 

where (Pm' qm) = Pm is defined by (13), we find 

(20) -m + = am em + cml 
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and, by induction, 

(21) N(em) = Qm+IQ-' 
Thus, if aO E O9K and Qm+i = ?Q0 for some m > 0, em will be a unit of 9K. 

Forf(am) = [am], the integer value of am, the JPA becomes the simple continued 
fraction algorithm (SCF) for ao, with the determining sequence (am) being the 
sequence of continued fraction coefficients, and Pm = (qm, Pm) giving the conver- 
gents Pm/qm to ao. The integral algorithm (15), (16), (18) is very close to the 
Lagrange algorithm for SCF coefficients (see Chrystal [4, Chapter 33]). The SCF 
for a quadratic surd is always ultimately periodic, so after a finite number of steps 
the complete determining sequence (SCF coefficients) is known. If we expand / d 

(or 2 + 2 v/d for d 1_ (mod 4)), the first cycle is complete when ? Qm = Q0, so 
that by (21) em- is a unit of Q(V/d) and in fact (Hendy [5, pp. 167-168]) em-l is 
the fundamental unit of Q(V/d). 

Example 1. Let ao = V/211. For f(am) = [am] the JPA becomes the SCF. We list 
below the first 16 values of Am, Qm' am. It is easily seen from the algorithm that 
whenever Am = -Am+i or Qm = -Qm+I we reach the midpoint of the cycle with 
the subsequent values being reflected until the 2mth or 2m - Ith term where 

Q2m = Q0 or Q2m-1 = Q0 
m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Am 0 -14 1 -13 14 -11 7 -11 9 -4 11 -13 8 -13 13 -8 

Qm 1 -15 14 -3 5 -18 9 -10 13 -15 6 -7 21 -2 21 -7 

am 14 1 1 9 5 1 2 2 1 1 4 3 1 13 1 3 

In this case Q26 = Qo = 1, so by (21) e25 is the fundamental unit of Q(V/21 1). The 
sequence (am) cycles with cycle length 26, after the first term: 

(am) = (14,1 i, 1,9,5, 1,2,2, 1,1,4,3, 1, 13, 1,3,4, 1,1,2,2, 1,5,9, 1, 1,29). 

Using (13) or the standard recurrence formulae for SCF convergents, we find 

25 = P25 + q25\/211 = 278354373650 + 19162705353\/211 
as the fundamental unit of Q(V\21 1). It is only in this final computational step that 
calculations involving large integers may be required. 

Example 2. Let ao = (2 + V 10)/(1 + V10) E Q(V 10). With f(am) =[am] we 
have the SCF. 

Q0= N(1 + V10) = -9, 00= (2 + V/10)(1- V10) = -8-- 10. 

m 0 1 2 3 4 ... 
Am -8 1 -3 3 -3 ... 

Qm -9 1 -1 1 -1 ... 

am 1 4 6 6 6 ... 

Thus (am) = (1, 4, 6). 
If we use the nearest integer approximation, f(a) = {a) = [a + 2] then the JPA 

becomes the nearest integer algorithm (NIA), which is observed in general to 
require about 69% of the number of steps required by the SCF to obtain the 
fundamental unit (Williams [10], Adams [1]). We illustrate the NIA below in 
calculating the fundamental unit of V/211. In comparison with the SCF, Example 
1, which required 26 steps, the NIA requires only 18 steps. 
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Example 3. f(am) = { am}, ao = V/21 1. 

m 0 1 2 3 4 5 6 7 8 9 10 11 12 
Am 0 -15 13 -14 16 -11 19 -11 13 --15 15 -13 17 ... 

Qm 1 14 -3 5 9 -10 -15 6 -7 -2 -7 6 13 

am 15 -2 -9 -6 3 3 -2 -4 -4 15 -4 -5 2 ... 

(am) = (15, -2, -9, -6, 3, 3, -2, -4, -4, 15, -4, -5, 2, 2, 3, -6, -10, 2, 29) 

with period length 18. The calculation of '17, using (13), gives the fundamental unit 
as before, but with less computation. 

4. The Algorithm for Cubic Numbers. Let K = Q(S), where 8 is a real root of the 
irreducible polynomial X3 + rx + s = 0, r, s E Z. As before, we can express 0m,ji 
,tm,ji as linear integral combinations of 1, 8, 8 2. Suppose 

(22) 6m,1 = Bm + CmE + Dm2 

(23) Om,2 Fm + Gm5 + Hm82, 

Bm Cm, Dm, Fm Gm, Hm E Z and let 

(24) Am = Bm - am,iQm, 

(25) Em = Fm - am,2 Qm 

so that 

(26) Om,, = Am + Cm5 + Dm82, 

(27) (Am,2 = Em + Gm5 + HmS2. 

Inserting these values for 0m,ij cm,i in Eqs. (8), (10), and (9), we obtain recurrence 
relations amongst these coefficients, viz. 

Fm+i = (A2 - 2rAmDm + rCm2 + sCmDm + r2Dm)Qm-', 

Gm+, = -(AmCm + sD2)Q 1 

Hm+ = (C + rDmJ - AmDm)Qm'D 

(28) Bm+1 = (EmFm - s(GmHm+1 + HmGm+1))Qm ' 

Cm+i = (EmGm+1 + Gm Fm+i - r(GmHm+i + HmGm) - sHmHm+i)Qmm', 

Dm+1 = (EmHm+1 + GmGm+1 + HmFm+i - rHmHm+1)Q,,', 

Qm+1 = (Fm+iAm-s(Gm+iDm + Hm+ Cm))Qm'. 

Am+, and Em+I are obtained from (24), (25) and 

am + =f(Om + 1 Qm +1 ) 
A more involved determinantal form of formulae (28) has been developed by 0. 
Perron [7]. 

Example 4. Set a0 1-3.3186, the real root of the cubic X3 - 8x - 10 = 0, and 
a - a021. ao, is the number whose intriguing continued fraction expansion was 

noted by John Brillhart and explained by H. M. Stark [8]. In contrast, with 
f(am,i, am,2) = ([am,], [am2]) the JPA is periodic with period 2 and a preperiod also 
of length 2. 
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m Am Bm Cm Dm Em Fm Gm Hm Qm am, I am,2 

0 -3 0 1 0 -11 0 0 1 1 3 11 
1 19 19 1 -2 -20 1 3 1 7 0 3 
2 -3 0 1 0 -20 3 3 1 1 3 23 
3 19 40 1 -2 -20 1 3 1 7 3 3 
4 -3 0 1 0 -20 3 3 1 1 3 23 
5 19 40 1 -2 -20 1 3 1 7 3 3 
6 -3 0 1 0 -20 3 3 1 1 3 23 

Using Eq. (13) we get the following sequence of simultaneous rational approxi- 
mations for (aO,1, aO,2): 

3 118 {10 338 (239 793 750 2489 (17977 59659 
1 ' 1 } 3 9 3 J' 72 2 J'' 226 226 J' 5417 ' 5417 J' 

56420 187237 1352341 4487917) 
17001 '17001 J'\407500 9 407500J 

In some instances the JPA can be applied to the problem of finding the fundamen- 
tal unit of pure cubic fields. If 83 = d > 1, a cubefree integer, then r = 0, s = -d 
so that Eqs. (28) simplify to 

Fm+ = (A, 2- dCmDm)Q, ,' 

Gm+I = (dDm2 - AmCm)QQm,', 

Hm+I = (Cm2 - AmDm)Qm ' 

(29) Bm+1 = (EmFm+1 + dGmHm+1 + dHmGm+1)Qm,'9 
Cm+i = (EmGm+i + GmFm+l + dHmHm+i)Qm 'g 

Dm+j = (EmHm+l + GmGm+l + HmFm+i)Qm,-' 

Qm+i = (AmFm+i + dCmHm+l + dDmGm+i)Qm-'. 

(Formulae (29) also appear in a different form in Bernstein [3].) 
Example 5. Let 83 = 71, and set a01 = 8, aO,2 = 82, withf(am,i, am,,) =(fam 

{am,2}), the nearest integer approximation. Some values of the coefficients are: 

m Am Bm Cm Dm Em Fm Gm Hm Qm am,1 am,2 

0 -4 0 1 0 -17 0 0 1 1 4 17 
1 5 12 3 -1 -33 16 4 1 7 1 7 
2 -10 2 2 0 -66 34 8 2 4 3 25 
3 -66 -93 3 6 -29 25 5 1 -27 -1 -2 
4 369 117 45 9 972 -486 -108 -27 -243 -2 6 
5 68 348 -2 -2 818 -442 -92 -22 -140 -2 9 

22 -2 142 2 -2 -561 159 57 15 144 1 5 
23 11 7 -7 1 -8 2 2 0 -2 2 -5 
24 113 113 13 -2 481 -309 -74 -19 -395 0 2 
25 56 42 -14 0 5 -37 3 -1 14 -1 -3 
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Again, using (13), we find 

25= P25,2 + P25,10 + q2582 

- 1788355606552816482 + 4318846456843161728 + 10429936109709542582, 

which we see from Wada's table [9, p. 1136] is the fundamental unit of Q(S). 
Directly, we could note the approximation 

N(e5)=.3 ((X8- _y)2 + (y _ ZS)2 + (ZS - 1)2) d 

where the error 0(y -3/2) is sufficiently accurate to show N(e25) = 1, So e25 is a 
unit. Then, following the testing procedure of Jeans and Hendy [6], it is readily 
shown that this unit is fundamental. We note, however, that similar calculations 

withf(am) = ([am,2], [am,2]) do not attain the coefficients of the fundamental unit of 

Q(t/7 1). 
Example 6. Let 83 = 4 and set aO1 = 8, aO,2 = 8 2. Bernstein [2, p. 69] makes the 

following comments about the vector ao, 
"This vector seems to occupy a most magic, and most annoying, place in the 

theory of JPA with f(a(k)) = [a(k)]. No human effort nor the capability of any 
computer have ever succeeded to find even a small hint of periodicity, tests having 
been pushed up to a(0)T('50 . Of course, this does not yet disprove periodicity". 

Using (29) with f(am) = ([am,1], [am,2]), the first 170 steps of the JPA of ao were 
obtained with the aid of a B6700 computer. This was achieved without resorting to 
multiprecision arithmetic programs as the standard double precision (24-digit 
mantissa) available on the B6700 was sufficient to perform the required calcula- 
tions. However, any further steps would require the use of multiprecision arith- 
metic programs. These 170 steps required approximately three seconds of process- 
ing time. The additional steps beyond Bernstein's do not reveal any periodicity. On 
the contrary, the Corollary to Theorem 1 suggests that periodicity will not occur. If 
periodicity is to occur eventually, the coefficients Bm, Cm, Dm, Fm, Gm, Hm, Qm must 
be bounded. For the 170 steps calculated the coefficients show no sign of being 
bounded and appear generally to grow at an exponential rate over this interval. At 
the 170th step the coefficients range in magnitude from 

H170 = 69943421634393666321 

to 

F170 = 279552463311408291981. 

In contrast to the above, we find that for the JPA of ao with f(am) = (am,j}, 
{a,,2)) the nearest integer approximation is periodic with a preperiod of length 3 
and a period of length 12, and the largest valued coefficient being 12. 

5. Conclusion. Specific algorithms such as (29) could be developed for fields of 
degree greater than three, and indeed the authors have done so for the fields Q(0) 
where 6 satisfies the minimal polynomial X4 - d = 0. However, the equations 
rapidly grow in complexity, and it seems pointless to derive them until a specific 
purpose is at hand. The equations (8), (9) and (10) together with the symmetric 
functions on the roots of the minimal polynomial suffice to create the appropriate 
equations. 
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It appears, in investigating periodicity of the JPA on pairs of cubic integers, that 
when periodicity occurs the coefficients all remain small integers (< 500), and in 
all other instances the coefficients eventually begin to increase rapidly in value. We 
are currently investigating the appropriate f function to apply in order to keep the 
coefficients small. 
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